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Developing Neural Networks for bio-inspired Hardware

Neuromorphic Topology Design and Parameter Training

|l Deep Learning for Neuromorphic Hardware

The development of Neural Networks (NNs) for neuromorphic
hardware (HW) accelerators requires special care, as generic
NNs do not map well to non-GPU HW.

The FMD provides a Neuromorphic Computing Tool Chain inspired by
the classical Deep Learning workflow to develop and deploy NNs on
mixed-signal HW accelerators:
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Network topology and parameters can be optimized
simultaneously through neuroevolution.

This Is approach differs fundamentally from Neural Architecture
Search & Deep Learning, as layer abstraction and gradient-based
optimization are not required.
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» Fithess measure derived from target use case & KPIs
= Suitable for non-differentiable tasks

* Finds the most efficient & compact solution for your embedded
application

4 Training Beyond Backpropagation

Bio-inspired learning rules for parameter training promise to
make NNs more robust to signal & HW noise as well as more
energy efficient during training and inference.
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Local Learning:

= Optimize weights w/o gradients
= Can also be used to find new
plasticity rules

= _What fires together,
wires together”
= (Observed in Neuroscience

"3 Hardware/Software Co-Design

Co-Designing NNs with current & next HW generations allows us
to meet your target requirements in the most cost-effective way.
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-3 Enabling Application-driven Solutions

We are ready to tackle for your application with NNs that:
= consider hardware resource limits

= find the best trade-off between
o accuracy,
o robustness,
o latency,
o efficiency

= grow into the neuromorphic target hardware

Get In touch to learn more about the FMD approach to neuromorphic
systems!
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